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sion and the resolution desired. The precision and the
resolution are defined by one input value, while the shapeThe number of nodes of an edge quadtree is the measure of

its space complexity. This number depends on the figure’s is calculated using the fractal dimension. The proposed
shape, its resolution and its precision. The goal of this work is methodology uses the fractal measure also as an input
to prove that a relation exists between the number of nodes of value, because this gives more information on how the
an edge-quadtree and these three parameters. To reach this image occupies the space. An experimental approximation
goal an experimental approach has been used. A unique value of the function is obtained by a suitable training of a neu-
to represent both the resolution and the precision is used. To

ral network.measure the shape of the image we use the fractal dimension. A
The second section of this paper describes what an edge-methodology to calculate the fractal dimension and the fractal

quadtree is and contains the definition of precision andmeasure is proposed. These three parameters being given, we
resolution. A measure of the precision and of the resolutionuse a neural network to approximate the sought function. The
is given in the third section. In this section some classicalcomputational results show the effectiveness of this

approach.  1997 Academic Press methodologies for the definition of the shape are also sur-
veyed, including fractals and box counting techniques.
Modifications of these techniques are also considered, in

1. INTRODUCTION view of their application to this problem. The problem of
function approximation is treated in the fourth section,

Quadtrees are well known hierarchical data structures, which also covers the topic of neural networks. The compu-
based on a regular and recursive decomposition of space, tational results are given in the fifth section, in which the
used to represent spatial data. This methodology reduces kind of data employed and the way they have been gener-
storage by aggregating data having identical or similar val- ated are also explained. Some conclusions in the sixth sec-
ues and it improves data manipulation. In particular, the tion complete the paper.
edge-quadtree is used to transform a bitmap, representing
an image composed of lines and curves, into a quadtree. 2. THE EDGE QUADTREE
The nodes of the edge-quadtree contain the coordinates
of the segments which approximate the curves. As the quadtree data structure evolved from work in

The total number of nodes in a quadtree representation different fields, it is natural that different versions of it can
of a scene is referred to as its complexity. Many papers be found for each kind of spatial data. Its development
in the literature have dealt with the space efficiency of has been motivated to a large extent by the desire to save
quadtrees, but so far no comparable results are available storage by aggregating data having identical or similar val-
for the edge-quadtree. The number of nodes in the edge- ues. According to Samet [16, 17], quadtrees can be differen-
quadtree depends on several factors: the first is the irregu- tiated on the following bases:
larity of the image (shape), the other two are the precision

• The type of data they represent. Currently they are usedand the resolution, which are used by the algorithm to
for point data, curve, spaces and volumes.decide when to stop the subdivision process.

• The principle guiding the decomposition process. AAim of this paper is to evaluate the number of nodes
decomposition into equal parts at each level is termedof an edge-quadtree as a function of the shape, the preci-
a regular decomposition. On the other hand, the decompo-
sition may adapt itself to the shape of the input image,
resulting in an irregular tree (irregular decomposition)* This research is partially supported by the CSISEI-CNR and MURST.
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• The resolution is a parameter that defines the number
of times the decomposition process is applied. It may be
fixed beforehand (i.e., input value) or it may be governed
by properties of the input data. From an application view-
point, the resolution defines the ability to discriminate
between two objects (points, lines, etc.) near to each other.

The edge-quadtree [19] is useful when the image is com-
posed of lines and curves [17]; therefore the edge-quadtree SCHEME 1
finds its relevance in applications such as medical informa-
tion systems—where ECG and EEG have to be efficiently
stored and retrieved [18]—and geographical information with as many segments as necessary to approximate the
systems—where different types of information on maps picture. See Scheme 1.
are of monodimensional nature (e.g., contour plots). Other • The precision, expressing the fidelity with which a
quadtree structures have been defined for this purpose, shape is represented, is measured by the value of the maxi-
notably the PM-quadtree family. According to Samet [16, mal distance between the points of the curve and the seg-
17], the PM quadtrees differ from edge quadtrees as to ment approximating the curve, measured on the perpendic-
how they treat the vertices (intersection of more lines), ular to the segment,
but they are still based on a recursive regular decomposi-
tion and they are influenced by the shape of the image.
As the differences among these data structures lie only in p 5 max Suax 1 by 1 cu

Ïa2 1 b2 D (1)
the decomposition algorithm, our approach can be ex-
tended to PM-quadtrees as well.

The maximal precision is obtained when the segment andIn an edge quadtree, a region containing linear feature,
the curve are coincident and it is expressed by setting toor part thereof, is subdivided into four squares repeatedly
zero the maximal accepted distance between the curve anduntil a square is obtained that contains a single curve that
the segment. The minimal precision is the diagonal of thecan be approximated by a single straight line. The image
box into which the line to be approximated is inscribed.is inscribed in a box of size 2n 3 2n pixels and the space
See Scheme 2.is recursively subdivided into four equal boxes until the

stop condition is verified. The boxes correspond to the
The technique used to store the tree coming from thenodes of the quadtree. In the worst case, to represent a

decomposition process is the linear quadtree, proposed byfigure of 2n 3 2n pixels, it is necessary to use a quadtree
Abel and Smith [1] and Gargantini independently [5]. Thisn levels deep. The nodes of the kth level represent the
methodology is more efficient than that which usesblocks of 2k 3 2k pixels; the root is at level n and the nodes
pointers. In fact, even if it seems natural for the algorithmat level 0 represent single pixels. With this type of image
to use pointers to store a hierarchical data structure, thethe algorithm has to test two conditions before stopping
linear quadtree, based on locational codes, uses less mem-the decomposition process: one, depending on the dimen-
ory. See, for instance, [21].sion of the box and on the number of lines and curves; the

While the algorithm to convert the image into the quad-other, depending on the irregularity of the arc of curve
tree is theoretically well defined, in our case we have toincluded in the box. These conditions relate to the resolu-
find all the possible limit configurations. Also, we have totion and the precision of an edge-quadtree.
prevent the algorithm from stopping in a box which con-
tains a particular case; since we want to decompose an• The resolution is defined in the edge-quadtree when

the maximal dimension of the box to explore is specified.
The minimal resolution will be the dimension of the box
into which the initial image is inscribed, the maximal reso-
lution is the pixel. When the resolution is fixed, the decom-
position process will stop in the case it meets a box where
there are only two intersections between the box itself and
the curve or when the process arrives at the box whose
dimension corresponds to the maximal resolution. In the
second case, if there is only an approximation line in the
box, the algorithm approximates it with the segment, while

SCHEME 2when there are more lines inside the box it stores a node
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~ inters 5 2 with two different sides `¬' inter-
nal pixel h(Fig.1D)j
~ inters 5 1 hthe line starts inside Q (Fig. 1E)j

then begin hit is necessary to subdivide further
the boxj

EDGE QUADTREE(NW)
EDGE QUADTREE(NE)
EDGE QUADTREE(SW)
EDGE QUADTREE(SE)
end;

else if inters . 2 on the same side, they adjoin
and no points fall inside the box

hthe line is tangential to one side (Fig. 1H)j
then approximate the line with the segment
else beginhthere are two intersections on differ-
ent sidesj

calculate the equation of the straight line
which connects the intersection points;
; black pixel [ Q calculate the distance
from the line;

if max(distances) . fixed precision value
h(Fig.1I)j

~ the number of black pixel , Sd length of
the segment

FIG. 1. The nine particular cases. hthe line is partioned (Fig.1F)j
then begin hwe have to subdivide further}

EDGE QUADTREE(NW)
EDGE QUADTREE(NE)

image according to general criteria. Figure 1 illustrates the
EDGE QUADTREE(SW)

cases; the pseudocode follows [18].
EDGE QUADTREE(SE)

We define
end;

else approximate the line with the segment• Q, the rectangular box
end;• x0 , the x coordinate at the right top of the box

end;• y0 , the y coordinate at the right top of the box
end;• k, the dimension of the box (edge-quadtree level)

end;• inters, the number of intersection points between the
image and the sides of the box

At the end of the creation process, each item of the data• NW, NE, SW, SE, the parameters of the four boxes
structure contains:of the next level respectively

• the locational code of the box;then
• its decomposition level;
• the coordinates of the intersection points between thePROGRAM EDGE QUADTREE[Q(x0 , y0 , k)]

curve and the box edges.begin
A detailed description of the algorithm can be found

if ¬' a black pixel [ Q in [18].
then exit; hthere are no lines into the boxj
else begin hexamine the intersections with the box edgesj 3. RESOLUTION, PRECISION AND SHAPE

if inters . 2 hthere is more than one linej
~ inters 5 0 hall the lines are inside the box The complexity in space is defined as the total number

of nodes constituting the quadtree. An a priori knowledge(Fig.1A)j
~ inters with the same side $ 2 of this quantity is of considerable interest in problems

involving tree search, because time and space complexitieshit is impossible to approximate the line
(Figs.1B, 1C)j are interrelated [4, 11].
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In this section we examine the problems related to the
evaluation of the space complexity of an edge-quadtree as
a function of shape, resolution and precision.

The same value can be used to specify the resolution
and the precision, as the diagonal of the minimal box also
represents the maximal distance between the points of the
curve and any point of the segment which approximates

FIG. 2. The (x, y)-extent of an image.the curve.
As to the shape, two approaches have been explored.

The first one—a raster to vector conversion—is to open
finite value for Hs(Ed), which is the limit of Hs

d(Ed) whenany closed line and to transform it in f (x, y) or f (r, u). A
d goes to 0.similar transformation has been used in pattern recognition

We can say that s is the dimension of E and c its measure.in the case of non-self-intersecting closed curve [14].
Using a logarithmic operator (Eq. (6)), we getHowever, since the goal of this work is to find a proce-

dure applicable even to images formed of several lines, an
log N(d) 5 2s log d 1 log c (6)alternative, more fruitful approach has been adopted: it

consists of using the fractal dimension to define the input
s 5

log N
log (1/d)

2
log c

log (1/d)
(7)shape. This technique can be directly applied to the array

of pixels as well as to fractal curves. The next sections
explain the methodology. When d becomes very small the last term in Eq. (7) goes

to 0 and we may write Eq. (8), which gives the expression
3.1. Box Counting normally used to calculate the fractal dimension. With Eq.

(9) we also define the logarithmic value of the fractalTo understand the fractal dimension it is necessary to
measure:shortly point out the definition of Hausdorff’s measure and

of measures derived from it. A deeper presentation of this
topic can be found in [2], [10], [13]. s 5 lim

dR0
S log N

log (1/d)
2

log c
log (1/d)D5 lim

dR0

log N
log (1/d)

(8)
The fractal dimension is related to the Hausdorff mea-

sure defined as
log c 5 log N(d) 2 s log

1
d

(9)

Hs 5 lim
dR0

Hs
d (E)H 0 s , s

y s . s,
(2) 3.2. Implementation Problems

There is an obvious difficulty in using Eq. (8): it is not
possible to evaluate the limit d R 0. The lines in an imagewhere E is the set to cover, d is the diameter of the subsets
are made of pixels and d cannot decrease as much as inwhich cover E and s is the dimension of E. It is possible
the case the line thickness is null: we have to stop at theto demonstrate that there is a value s of s for which the
box whose dimension is the pixel. Moreover we never havelimit exists and its value is finite. This value is the dimension
an image made of fractal curves and so we look for theof the set E.
finite measure of the dimension of our lines. For theseBox counting is an easy alternative to the Hausdorff’s
reasons while we can not decrease d too much—it woulddistance. Given a set E, the idea is to use only regular
not be useful either—we may decrease it enough to applyboxes to cover E and to measure its dimension. Let ad be
Eq. (8).a uniform division of space with boxes whose diameter is

d. If hai ; i 5 1, . . . , Nj is the set of boxes which has an
intersection with E, we can write:

E 5 <
N

i51

ai (3)

Hs
d(Ed) 5 N(d) ? d s (4)

N(d) 5 c ? d 2s. (5)

FIG. 3. A line made by pixels.Equation (5) is a sufficient condition in order to have a
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This new set of values haj ; j 5 1, . . . , n 2 1j gives
information on the original points in the log/log plane.

The value of the slope is always greater than or equal
to 1.

The lower bound is computed by looking for the last
value of aj $ 1. (I.e., if an21 , 1 the lower bound of 1/d is
set to an22 , etc. until we find the first value of aj $ 1.)

The upper bound is defined in two different modes: one
based on empirical considerations; the other based on a

FIG. 4. A line and the boxes that cover it. statistical operator. The computational results show that,
for some pictures, there is a great difference between the
first values of aj (i.e., a1 , a2 , etc.) and all the other valuesIn order to obtain a stabilized and consistent fractal
(Fig. 5). This means that, at the first subdivision of thedimension, we had to solve some problems. The first one
space, the algorithm does not distinguish between singleis related to the fact that the image may be smaller than
lines and the background, but it ‘‘sees’’ the image as a fullthe maximal area we considered. The area we use is the
picture. One upper bound is based on the inequalitiesmonitor screen (480 pixel 3 480 pixel). If we apply box

counting at the monitor surface when the figure is smaller,
aj 2 aj21 $ 0.2we make a mistake and we obtain a wrong measure. To

solve this problem we inscribe the image into its (x, y) 2 aj 2 aj22 $ 0.2 for ( j 5 1, . . . , i 2 1)
extent (Fig. 2).

aj 2 aj23 $ 0.2For every value of d we have to compute the number
of boxes N(d) which have an intersection with the image,
i.e., the boxes which contain at least one pixel of the curves. with 1 # aj # 2. If the three inequalities are simultaneously
Then we plot log N(d) as a function of log(1/d). The slope verified the algorithm calculates the linear regression using
of the straight line calculated using a linear regression gives the set of points (xi , yi), with i 5 j, . . . , n.
the fractal dimension s. Let

The calculation is affected by the presence of noise:
• yk be the initial values;either ‘‘real’’ noise in experimental data or round-off noise
• ŷk be the value obtained from the linear regressionin numerical computations [8]. The real noise concerns the

with the xk values as input;computation of N(d). Lines and curves are made by a
• y be the mean of the yk ;number of pixels which is variable with the slope of the

line (Fig. 3). For this reason, for some values of d, the then
pixels of the image could intersect a number of boxes
greater than expected—thus resulting in a value of N(d)
greater than expected (Fig. 4).

The points with a value of N(d) affected by noise modify R2 5

On
k51

(ŷk 2 y)2

On
k51

(yk 2 y)2

, (11)
the slope of the linear regression. To minimize this effect
we want the greatest number of points in the log/log plane.
This means that the algorithm searches the greatest com-
mon divisor between the two sides of the (x, y)-extent. called the coefficient of determination, can be used to

When 1/d is large, the value of s is near 2, because
N(d) increases as if we had a surface. However, when 1/d
decreases too much (s R 1 or less), then the problem is
to define a range for 1/d n—the latter varying with each
picture.

Given h(xi , yi); i 5 1, . . . , nj, the set of points in the
log/log plane, we calculate the slope of the linear regression
using only two points according to equation (10), thus
obtaining the upper and the lower bound for 1/d.

aj 5

2 Ok11

j5k
xjyj 2 Ok11

j5k
xj Ok11

j5k
yj

2 Ok11

j5k
x2

j 2 Ok11

j5k
xj Ok11

j5k
xj

(10)

FIG. 5. Points in the log–log plane.
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FIG. 6. The plot of R9n (number of points) and R9m (number of points).

estimate the adequacy of the regression model [9]. It is fractal dimension s. Moreover, as the resolution increases,
the number of nodes increases more in the second case thanclear that 0 # R2 # 1.

By calculating R2
n with n 5 3, . . . , i 2 1 and plotting it as in the first case. To solve this problem we need a parameter

representative of how much space the picture occupies: thea function of n, we obtain the graph of Fig. 6A. The sought
function of R2

n has a point of maximum, but for every picture fractal measure. In fact, from Eq. (5) we have that c 5
N(d) ? d s,whereN is the numberofboxeshavinganintersec-we obtain a decreasing monotonic function (Fig. 6A). This

means that we can not obtain the value of the upper bound tion with the picture and s is the box dimension.
Equation (8) gives the fractal measure:from R2

n . As it is necessary to evaluate the amount of the
increments of R2

n , we calculate R92
m 5 R2

n11 2 R2
n with m 5

1, . . . , n 2 1, thus obtaining the graph of Fig. 6B.
For some pictures this function has a point of maximum

log c 5 q 5 y 2 mx 5

On
i51

yi 2 s On
i51

xi

N
(12)

and, in this case, we use the value of m (i.e., n 2 1) to set
the upper bound of 1/d. The values of d rejected by both
(empirical and statistical) correspond to boxes less than
10D, where D is the fractal measure plus one for the noise.

5

On
i51

log Ni(d) 2 On
i51

log 1/di

N
.

This result is in accordance with the work of Theiler
[20] which sets to 10D the minimum number of boxes re-
quired for d to be a ‘‘good’’ value. Two different fractal measures are needed: one to repre-

There is not a biunivocal correspondence between the sent how an image ‘‘sits’’ in the (x, y) 2 extent, the other
fractal dimension and the number of nodes. For the same for the entire space (i.e., in our case the video), the equa-
resolution and precision there are pictures which have the tion being the same with two different values for d. In the
same fractal dimension, but a different quadtree. The num- first case d0 is the side of the (x, y) 2 extent, with d1 , d2 ,
ber of nodes depends on the shape as well as on the image . . . , di the fractional values of d0 . In the second d0 is the
spatial distribution. In fact if the algorithm has to store a side of the video and as d1 , d2 , . . . , di are the fractional
picture made by a closed line whose fractal dimension is s, values of d0 .
it uses a number of nodes smaller than that used to store an We call relative fractal measure (r.f.m.) the first one and
image made by two or more closed linear lines with the same absolute fractal measure (a.f.m.) the second one.

FIG. 7. Points in the log–log plane (straight line). FIG. 8. Points in the log–log plane (with noise).
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FIG. 10. The real output and the neural output of Fig. 9.FIG. 9. Input values: f.d. 5 1, r.f.m. 5 0, a.f.m. 5 0.

parameters. The neural networks provide the answer.We have identified three different situations. The first
Given a continuous and multivariable function f (x) de-one corresponds to points located on a straight line (Fig.
fined on the set X, an approximation error « . 0, and an7). This means that the image is a square surface or a
approximation function f̂ (x, w), which depends continu-straight line (i.e., s 5 1 or s 5 2). For the second case,
ously on the parameter vector w and on x, the approxima-corresponding to a new set hajj decreasing in value, it is
tion problem consists of choosing vector ŵ, so thatpossible to identify an asymptotic value. In the third case

the points are affected by noise and very different values
r[ f (x), f̂ (x, ŵ)] # « ;w [ W, ;x [ X,for hajj may arise (Fig. 8).

where W denotes the set of acceptable parameters and r4. NEURAL NETWORKS
the distance between two functions (L2 norm, for instance).

For the sake of simplicity, we will consider the approxi-Finally we ought to find a scalar function that approxi-
mates the function we are looking for, which links the mation of scalar functions only.

The existence of a good approximation depends on thespace complexity of an edge quadtree to the four input

TABLE 1
Neural Network Configuration and Computational Results

N. layer Normalization N. neurons N. steps Learning error % of right

1 20 11,000 0.050 90X 2 min
max 2 min

1 30 11,520 0.052 92ln X
ln max

1 20 11,680 0.052 94ln X
log (1/0.0001)

2 15–7 9,000 0.045 96ln x
log (1/0.0001)

2 20–10 9,500 0.049 93ln X
ln max

2 15–7 8,000 0.045 94.5ln X
log max

2 no one 15–7 10,000 0.049 94

2 log X 15–7 11,000 0.049 94

2 15–7 10,000 0.056 90ln X
log (1/0.0001)

2 15–7 10,000 0.055 91ln X
log (1/0.0001)
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FIG. 11. Input values: f.d. 5 1.1, r.f.m. 5 1.31, a.f.m. 5 2.5.

FIG. 13. Input values: f.d. 5 1.4, r.f.m. 5 0.91, a.f.m. 5 1.42.
class of functions f̂(x, w) belongs to. Function f̂ (x, w) is
expressed as

the basis of polynomials, etc. In [6, 7] the properties of
neural networks as a basis have been studied. In particular,f̂ (x) 5 On

i51
wifi(x)

it has been proved that a feedforward neural network with
one hidden layer, composed of neurons with sigmoidal

The function fi(x) : Rm R R must be chosen according activation function, and a linear output, can approximate
to the following conditions: any continuous function to the desired accuracy: in other

words, it is termed a ‘‘universal approximator.’’• fi(x) must be a basis for the class of functions f (x) to
There are two reasons to consider neural networks abe approximated;

good choice as a basis: if we choose a function g with a• a ‘‘good’’ approximation has to be obtained with a
local nonlinear property, we obtain a good approximationfinite number of terms;
with a sum of a finite number of functions belonging to the• unnecessary functions have to be easily eliminated
basis. In addition we can easily eliminate the unnecessaryfrom the linear combination.
functions from the basis by stopping the learning process

For the first condition the following equation must be before it arrives to the absolute minimum or by introducing
verified: in the objective function a term which penalizes the unnec-

essary parameters.
The proof that the neural network is a good approxima-f (x) 5 Oy

i51
wifi(x). (13)

tion does not explain why it has been preferred to the
polynomial basis, since both have the Weierstrass property.

A good approximation is obtained when the norm de- The difference between the neural network and the poly-
creases rapidly with n: nomial basis lies in the imposed constraints.

The polynomial basis has a number of possible terms that
increases rapidly with the dimension of the input vector. AUU f̂ (x) 5 On

i51
wifi(x)UU neural network, on the other hand, uses a limited number

of iterations since it learns to select the right combination
of inputs. When we increase the number of neurons weMany possible bases for a continuous f (x) have been

used, among them the spline function with fixed nodes,

FIG. 14. The real output and the neural output of Fig. 13.

FIG. 12. The real output and the neural output of Fig. 11.
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FIG. 15. Input values: f.d. 5 1.03, r.f.m. 5 1.22, a.f.m. 5 1.97.

FIG. 19. Input values: f.d. 5 1, r.f.m. 5 0.69, a.f.m. 5 1.38.

FIG. 16. The real output and the neural output of Fig. 15.

FIG. 20. The real output and the neural output of Fig. 19.

FIG. 17. Input values: f.d. 5 1.08, r.f.m. 5 2.12, a.f.m. 5 3.99. FIG. 21. Input values: f.d. 5 1.17, r.f.m. 5 1.73, a.f.m. 5 3.19.

FIG. 18. The real output and the neural output of Fig. 17.

FIG. 22. The real output and the neural output of Fig. 21.
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increase its approximation capability, not the degree of [0, 1]. The input data are easy to normalize, whereas
we employed three different types of normalization forthe polynomial regression.

The last problem is how to configure the network. There the output data. The best one, as in Table 1, is (ln Xi)/
(log (1/0.0001)).are many hypotheses on the ‘‘optimal’’ number of neurons

and hidden layers, but none about the rules to apply. In We also varied the number of neurons with little
influence on the output. In the fourth column we reportthe literature there are only some indication on the upper

bound; the problem is still undefined and matter of re- the number of steps.
The learning error is indicated in the fifth column. Itsearch [7, 12]. In particular, the hidden layers may be one

or two, depending on the particular application. There are is the average error between the network output and
no definite results, but it seems that to solve our problem the expected output, calculated on all training sets. When
it is better to use a network with two hidden layers [6]. the difference between the network output and the
Our experiments confirm this hypothesis. expected output is less then a predefined value (i.e.,

0.01), we consider that the network succeeded. The
number of right examples is expressed in column sixth5. COMPUTATIONAL RESULTS
of Table 1 as the percentage of right answers. Finally
the last two rows of Table 1 show the importance ofWe used a feedforward neural network with sigmoidal
a.f.m. and r.f.m. on the learning error.non linearities based on a commercial package (Neuralist

To evaluate the effectiveness of our approach weversion 1.3 EPIC systems Corp.). In Table 1 we report
created a set of 100 images composed of lines withthe result of the experiments with different configurations.
different thickness; 50 images were used to train theIn the first column we indicate the number of hidden
network and 50 to validate it. Note that the pictureslayers; the network with two hidden layers performs the
were composed of a different number of lines. Forbest. The second column reports the type of normalization

used. We normalized input and output data in the range every picture we built the quadtree with seven different

FIG. 23. Number of nodes vs fractal dimension and fractal measure.
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FIG. 24. The log number of nodes as a function of the fractal dimension.

precisions, ranging from 100 to 2 pixels for the box side. 6. CONCLUSIONS
We also calculated the fractal dimension and the two frac-

6.1. Discussion of the Resultstal measures.1

In Figs. 9–14 three images used in the training set are The idea that a relation exists between the number of
given, together with their results. In each graph we report nodes and the three characteristics of the image (shape,
the real function and the estimated function. Figures 15–22 resolution, and precision) has been proved and the preced-
represent four images of the validation set and their rela- ing results show the effectiveness of the solution used. The
tive graphs. Under every picture we report the value of approach used is experimental, so in this work an analytical
the fractal dimension (f.d.), the absolute fractal measure function that represents the relation is not reported.
(a.f.m.) and the relative fractal measure (r.f.m.). Let us In any case in Fig. 23 the plot of the number of nodes
notice that we obtain a good result; in fact the neural vs. the fractal dimension and the ordered values of the two
network gives an effective estimation of the space complex- fractal measure is shown for the 100 figures at the levels
ity. When this is not true we obtain that the estimation of precision of 20, 5, and 2 pixels. At the bottom of the
error is less than 20% in the average (but for Figs. 15, 19) figure as x coordinates we can read the fractal dimension,
and, in any case, the order of magnitude is maintained. the relative fractal measure and the absolute fractal mea-

Another observation is that the neural network gives a sure, whereas at the top of the figure we show the interval
better answer when the input image is complex with respect of points with the same fractal dimension.
to images made of one line only. This behavior is caused We plot in a two-dimensional space a function of four
by the type of normalization used and by the fact that the variables. The points are initially sorted by the fractal di-
training set is not homogeneous. In fact the normalization mension and then, once identified the group of figures
with the log operator compresses the values, so the neural with equal fractal dimension, we sort these pictures by the
network does not perceive the difference between small val- relative fractal measure. It is not possible to sort the figures
ues (e.g., 1 and 2) once they are normalized. When the image by the absolute fractal measure too, but the absolute fractal
is more complex, the difference between the number of measure and the relative fractal measure are correlated.
nodes increases as the precision increases, so that the neural The absolute fractal measure is useful when two pictures
network is capable to recognize the difference. The training with the same fractal dimension and relative fractal mea-
set is not homogeneous because complex images are a little sure have a different number of nodes and different values
more numerous in it than simple ones, but we think this is of absolute fractal measure: this proves that a picture is
enough to influence the results. When the fractal dimension univocally defined by the three inputs.
is calculated without noise, we obtain a better result. Let us comment on Fig. 23. The first observation is that

the distance (number of nodes) between the three lines
(low, medium, and high precision) increases when the frac-1 The time needed for these calculations is much lower than that needed

to build the actual edge quadtree. tal dimension increases. The second relates to figures with



72 SCHREIBER AND WOLFLER

valleys and peaks in the number of nodes. As said before, REFERENCES
some of this irregular behaviour can be explained on the

1. D. J. Abel and J. L. Smith, A data structure and algorithm based on abasis of absolute fractal measure. Moreover let us note
linear key for a rectangle retrieval problem, Comput. Vision Graphics

that the first figure with a different fractal dimension cor- Image Process. 24, 1983, 1–13.
responds to a valley in the number of nodes, although the 2. M. Barnsley, ‘‘Fractals Everywhere,’’ Academic Press, San Diego,
fractal dimension increases. This results from the fact that 1988.
the pictures with the same fractal dimension are sorted by 3. P. J. Davis, ‘‘Interpolation and Approximation,’’ New York, Blais-

dell, 1963.their fractal measure, so the first figure of the series has a
very low value of the fractal measure. 4. P. Flajolet, G. Gonnet, C. Puech, and J. M. Robson, The analysis of

multidimensional searching in quad-tree, in Proceedings of 2ndWe first conjectured of an exponential function of the
SODA, San Francisco, 1991, pp. 100–108.kind C ? 4p?[ f.d.21], with the constant C depending on the

5. I. Gargantini, An effective way to represent quadtrees, Comm. ACMfractal measure, p being the precision and f.d. the fractal
25, No. 12, 1982, 905–910.

dimension. As we plotted the log of the number of nodes
6. F. Girosi and T. Poggio, Networks for learning, in Neural Networks:

at the best precision level as a function of the fractal dimen- Concepts, Applications and Implementation, (P. Antognetti and V.
sion, Fig. 24, we realized that the complexity could be a Milutinovic, Eds.), pp. 110–154, Prentice–Hall, Englewood Cliffs,

NJ, 1991.logarithmic function or a polynomial. Further research is
needed to better qualify the type of curve. 7. R. Hecht-Nielsen, Neurocomputing, Addison–Wesley, Reading,

MA, 1991.

8. R. C. Hilborn, Chaos and Nonlinear Dynamics, Oxford University
6.2. Future Work Press, London.

9. P. G. Hoel, Introduction to Mathematical Statistics, Wiley, New York.The goal of this work was to find a methodology to
10. B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, Newobtain the number of nodes of an edge quadtree as a

York, 1977.function of three input parameters: shape, precision, and
11. B. G. Mobasseri, A new quadtree complexity theorem, in Proceedingsresolution. We found four parameters (fractal dimen-

of 11th ICPR, 1992, Vol. 4, pp. 389–392.
sion—related to the shape—relative and absolute fractal

12. L. Mussone, Le reti neurali artificiali nei trasporti, Trasporti & Tra-
measure—concerning the position of the figure in the im- zione,. 2, 1994, 56–72.
age space—and precision—with which we implicitly ac- 13. H. Peitgen, H. Jürgens, and D. Saupe, Fractals for the Classroom.
counted also for resolution) which permit a neural network Part One. Introduction to Fractals and Chaos, Springer-Verlag, New

York, 1992.to give, as its output, the number of nodes. This approach
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